
Letter to Bram Petri

Michael Magee

July 24, 2020

Dear Bram,

Let X denote a connected compact hyperbolic surface. Let ∆X denote the Laplace-Beltrami

operator on X. The spectrum of ∆X is discrete and accumulates only at ∞; the bottom of the

spectrum is 0 and is a simple eigenvalue due to X being connected. We denote by λ1(X) > 0 the

smallest non-zero eigenvalue of X, and h(X) the Cheeger constant. Write g for the genus of X and

diam(X) for the diameter of X. I’ll write inj(X) for the injectivity radius of X.

In your talk at Durham in June (on the paper [2]) you mentioned briefly how to pass from

having a lower bound on λ1(X) to having an upper bound on diam(X), by passing through the

Cheeger constant. Before discussing this, I recall that

h(X) ≤ 1 + og→∞(1) (0.1)

and

λ1(X) ≤ 1

4
+ og→∞(1). (0.2)

The first inequality (0.1) is by

h2(X) ≤ 1 +
16π2

diam(X)
(0.3)

due to Cheng [4] together with

diam(X) ≥ log volX)(1− o(1))

as you mentioned in your talk (by comparing volumes of balls in the universal cover to volumes of

balls in X). The inequality (0.2) is a result of Huber [6].

So suppose we know λ1(X) is large, and we want to bound diam(X) from above. One may use

the inequality of Buser [3]

λ1(X) ≤ 2h(X) + 10h2(X)

to first obtain a lower bound for h(X) as

h(X) ≥ 1

20

(
−2 +

√
4 + 40λ1(X)

)
(I am not sure if something better than this exists for hyperbolic surfaces). Even if λ(X) = 1

4 is

essentially optimal, this only gives

h(X) ≥ 1

20

(√
14− 2

)
≈ 0.087
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which is far from the optimal value of h(X). Continuing with this argument for general X, we can

then the following result that Mirzakhani [8, §4.6] gives as an explicit version of a result of Brooks

[1]: for any r0 > 0,

diam(X) ≤ 2

(
r0 +

1

h(X)
log

(
vol(X)

2B(r0)

))
.

where B(r0) is the infimum of the volume of a ball of radius r0 in X. In particular, if we choose

r0 = inj(X) we obtain

diam(X) ≤ 2

(
inj(X) +

1

h(X)
log

(
vol(X)

8π sinh(r0/2)2

))
and if we assume the injectivity radius is bounded from below by c > 0 and h(X) ≥ h > 0 we obtain

diam(X) ≤ 2

h
log vol(X) +Oc,h(1). (0.4)

Using the previous arguments, the optimal constant in from of log vol(X) one can obtain, beginning

with a bound on λ1(X), and passing through the Cheeger constant, is about 23. On the other hand,

if you have a roughly optimal bound on h(X), say h(X) = 1, then one obtains a constant 2 in front

of log vol(X).

My point here is that one can do better than the previous arguments starting from a lower

bound on λ1(X). Let me explain a more flexible bound below that will also apply to finite area

hyperbolic surfaces X.

At each point of x, we write iX(x) for the injectivity radius in X at x. The thick-thin decom-

position is

X = X<ε tX≥ε

where X<ε is the collection of points in x ∈ X for which iX(x) < ε.

We now make the assumption that

λ1(X) ≥ 1− δ2

4
(0.5)

for δ ∈ (0, 1). We can write X = Γ\H with Γ a discrete torsion-free subgroup of SL2(R). The

geodesic flow gt on T 1X can be identified with the action of the one-parameter group

at
def
=

(
et/2 0

0 e−t/2

)

on Γ\SL2(R). (The reason for the appearance of t/2 is to make the flow unit-speed).

This flow preserves a probability measure µ on Γ\SL2(R) that projects to the Riemannian

probability measure ν on X and has induced uniform probability measure in the SO(2) fibers (here

SO(2) acts on the right and Γ\SL2(R)/SO(2) is identified with Γ\X in the usual way). More

precisely,

ν =
dvol(X)

vol(X)

where dvol(X) is the volume form induced by the metric of constant curvature −1 on X. Let

L2
0(Γ\SL2(R)) denote the closed subspace of L2(Γ\SL2(R)) consisting of (classes of) functions

orthogonal to constants.
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Suppose we are given ε > 0 and two points x and y in X≥ε. The following theorem is a quantita-

tive version by Matheus [7] of a theorem of Ratner [9] (see [5, Lemma 2.2] for this exact formulation)

Theorem 0.1. There is a universal constant C > 0 such that with assumption (0.5) on λ1(X), for

any SO(2)-invariant vectors f1, f2 in L2
0(Γ\SL2(R)), we have

|〈atf1, f2〉| ≤ C‖f1‖L2‖f2‖L2te−
t
2
(1−δ).

Let ṽx and ṽy denote the characteristic functions of balls of radius ε with centers x and y,

respectively. The condition x, y ∈ X≥ε imply that these balls are embedded copies of balls of radius

ε in H and hence have Riemannian volume

κ sinh(ε/2)2

for some κ = 4π > 0. We lift ṽx to an SO(2)-invariant function vx on Γ\SL2(R) and similarly lift

ṽy to vy. We write

vx =

(∫
vxdµ

)
1 + v′x

and similarly decompose vy. We have∫
vxdµ =

∫
ṽxdν =

κ sinh(ε/2)2

vol(X)

and ∫
v2xdµ =

∫
ṽ2xdν =

κ sinh(ε/2)2

vol(X)

from which it follows that

‖v′x‖L2 ≤ ‖vx‖L2 ≤
√
κ sinh(ε/2)√

vol(X)
.

Furthermore, by construction, v′x ∈ L2
0(Γ\SL2(R)). The same statements all hold with x replaced

by y. Since at preserves L2
0(Γ\SL2(R)) we have

〈atvx, vy〉 =

(∫
vxdµ

)(∫
vydµ

)
+ 〈atv′x, v′y〉

=
κ2 sinh(ε/2)4

vol(X)2
+ 〈atv′x, v′y〉 (0.6)

and by applying Theorem (0.1) we have

|〈atv′x, v′y〉| ≤ C‖v′x‖L2‖v′y‖L2te−
t
2
(1−δ) ≤ Cκ sinh(ε/2)2

vol(X)
te−

t
2
(1−δ).

Combining this with (0.6) we see that

〈atvx, vy〉 > 0

when

te−
t
2
(1−δ) <

κ sinh(ε/2)2

Cvol(X)
.
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Assuming g →∞ with ε fixed, this holds with

t =
2

(1− δ)

(
log

(
Cvol(X)

κ sinh(ε/2)2

)
+ 2 log log

(
Cvol(X)

κ sinh(ε/2)2

))
.

On the other hand, 〈atvx, vy〉 > 0 entails that there is a geodesic of length t connecting the balls of

radius ε around x and y. This implies that the diameter of the ε-thick part of X is

diam(X≥ε) ≤ 2ε+
2

(1− δ)

(
log

(
Cvol(X)

κ sinh(ε/2)2

)
+ 2 log log

(
Cvol(X)

κ sinh(ε/2)2

))
.

When I refer to diam(X≥ε), I a priori mean the diameter allowing paths to leave X≥ε in order to

connect points.

To simplify the estimate above, one can fix ε and δ (so forcing uniform spectral gap) and let

g →∞. One obtains

diam(X≥ε) ≤
2

(1− δ)
log vol(X) +

4

(1− δ)
log log vol(X) +Oε,δ(1).

This applies also to finite area hyperbolic surfaces. The optimum result one expects from this is

(roughly) when λ1 = 1
4 and δ = 0 whence one obtains

diam(X≥ε) ≤ 2 log vol(X) + 4 log log vol(X) +Oε,δ(1).

In fact, the 4 above can be improved slightly.

Best wishes,

Michael,

17/7/2020

michael.r.magee@durham.ac.uk
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