Letter to Bram Petri

Michael Magee

July 24, 2020

Dear Bram,

Let X denote a connected compact hyperbolic surface. Let Δ_X denote the Laplace-Beltrami operator on X. The spectrum of Δ_X is discrete and accumulates only at ∞ ; the bottom of the spectrum is 0 and is a simple eigenvalue due to X being connected. We denote by $\lambda_1(X) > 0$ the smallest non-zero eigenvalue of X, and h(X) the Cheeger constant. Write g for the genus of X and diam(X) for the diameter of X. I'll write inj(X) for the injectivity radius of X.

In your talk at Durham in June (on the paper [2]) you mentioned briefly how to pass from having a lower bound on $\lambda_1(X)$ to having an upper bound on diam(X), by passing through the Cheeger constant. Before discussing this, I recall that

$$h(X) \le 1 + o_{g \to \infty}(1) \tag{0.1}$$

and

$$\lambda_1(X) \le \frac{1}{4} + o_{g \to \infty}(1). \tag{0.2}$$

The first inequality (0.1) is by

$$h^2(X) \le 1 + \frac{16\pi^2}{\operatorname{diam}(X)}$$
 (0.3)

due to Cheng [4] together with

 $\operatorname{diam}(X) \ge \log \operatorname{vol} X)(1 - o(1))$

as you mentioned in your talk (by comparing volumes of balls in the universal cover to volumes of balls in X). The inequality (0.2) is a result of Huber [6].

So suppose we know $\lambda_1(X)$ is large, and we want to bound diam(X) from above. One may use the inequality of Buser [3]

$$\lambda_1(X) \le 2h(X) + 10h^2(X)$$

to first obtain a lower bound for h(X) as

$$h(X) \ge \frac{1}{20} \left(-2 + \sqrt{4 + 40\lambda_1(X)} \right)$$

(I am not sure if something better than this exists for hyperbolic surfaces). Even if $\lambda(X) = \frac{1}{4}$ is essentially optimal, this only gives

$$h(X) \ge \frac{1}{20} \left(\sqrt{14} - 2\right) \approx 0.087$$

which is far from the optimal value of h(X). Continuing with this argument for general X, we can then the following result that Mirzakhani [8, §4.6] gives as an explicit version of a result of Brooks [1]: for any $r_0 > 0$,

diam
$$(X) \le 2\left(r_0 + \frac{1}{h(X)}\log\left(\frac{\operatorname{vol}(X)}{2B(r_0)}\right)\right)$$

where $B(r_0)$ is the infimum of the volume of a ball of radius r_0 in X. In particular, if we choose $r_0 = inj(X)$ we obtain

$$\operatorname{diam}(X) \le 2\left(\operatorname{inj}(X) + \frac{1}{h(X)}\log\left(\frac{\operatorname{vol}(X)}{8\pi\sinh(r_0/2)^2}\right)\right)$$

and if we assume the injectivity radius is bounded from below by c > 0 and $h(X) \ge h > 0$ we obtain

$$\operatorname{diam}(X) \le \frac{2}{h} \log \operatorname{vol}(X) + O_{c,h}(1). \tag{0.4}$$

Using the previous arguments, the optimal constant in from of $\log \operatorname{vol}(X)$ one can obtain, beginning with a bound on $\lambda_1(X)$, and passing through the Cheeger constant, is about 23. On the other hand, if you have a roughly optimal bound on h(X), say h(X) = 1, then one obtains a constant 2 in front of $\log \operatorname{vol}(X)$.

My point here is that one can do better than the previous arguments starting from a lower bound on $\lambda_1(X)$. Let me explain a more flexible bound below that will also apply to finite area hyperbolic surfaces X.

At each point of x, we write $i_X(x)$ for the injectivity radius in X at x. The thick-thin decomposition is

$$X = X_{<\epsilon} \sqcup X_{\geq \epsilon}$$

where $X_{<\epsilon}$ is the collection of points in $x \in X$ for which $i_X(x) < \epsilon$.

We now make the assumption that

$$\lambda_1(X) \ge \frac{1 - \delta^2}{4} \tag{0.5}$$

for $\delta \in (0,1)$. We can write $X = \Gamma \setminus \mathbb{H}$ with Γ a discrete torsion-free subgroup of $SL_2(\mathbf{R})$. The geodesic flow g_t on T^1X can be identified with the action of the one-parameter group

$$a_t \stackrel{\text{def}}{=} \left(\begin{array}{cc} e^{t/2} & 0\\ 0 & e^{-t/2} \end{array} \right)$$

on $\Gamma \setminus SL_2(\mathbf{R})$. (The reason for the appearance of t/2 is to make the flow unit-speed).

This flow preserves a probability measure μ on $\Gamma \backslash SL_2(\mathbf{R})$ that projects to the Riemannian probability measure ν on X and has induced uniform probability measure in the SO(2) fibers (here SO(2) acts on the right and $\Gamma \backslash SL_2(\mathbf{R}) / SO(2)$ is identified with $\Gamma \backslash X$ in the usual way). More precisely,

$$\nu = \frac{d\mathrm{vol}(X)}{\mathrm{vol}(X)}$$

where dvol(X) is the volume form induced by the metric of constant curvature -1 on X. Let $L_0^2(\Gamma \backslash SL_2(\mathbf{R}))$ denote the closed subspace of $L^2(\Gamma \backslash SL_2(\mathbf{R}))$ consisting of (classes of) functions orthogonal to constants.

Suppose we are given $\epsilon > 0$ and two points x and y in $X_{\geq \epsilon}$. The following theorem is a quantitative version by Matheus [7] of a theorem of Ratner [9] (see [5, Lemma 2.2] for this exact formulation)

Theorem 0.1. There is a universal constant C > 0 such that with assumption (0.5) on $\lambda_1(X)$, for any SO(2)-invariant vectors f_1, f_2 in $L^2_0(\Gamma \setminus SL_2(\mathbf{R}))$, we have

$$|\langle a_t f_1, f_2 \rangle| \le C ||f_1||_{L^2} ||f_2||_{L^2} t e^{-\frac{t}{2}(1-\delta)}.$$

Let $\tilde{v_x}$ and \tilde{v}_y denote the characteristic functions of balls of radius ϵ with centers x and y, respectively. The condition $x, y \in X_{\geq \epsilon}$ imply that these balls are embedded copies of balls of radius ϵ in \mathbb{H} and hence have Riemannian volume

$$\kappa \sinh(\epsilon/2)^2$$

for some $\kappa = 4\pi > 0$. We lift \tilde{v}_x to an SO(2)-invariant function v_x on $\Gamma \setminus SL_2(\mathbf{R})$ and similarly lift \tilde{v}_y to v_y . We write

$$v_x = \left(\int v_x d\mu\right) \mathbf{1} + v_x'$$

and similarly decompose v_y . We have

$$\int v_x d\mu = \int \tilde{v}_x d\nu = \frac{\kappa \sinh(\epsilon/2)^2}{\operatorname{vol}(X)}$$

and

$$\int v_x^2 d\mu = \int \tilde{v}_x^2 d\nu = \frac{\kappa \sinh(\epsilon/2)^2}{\operatorname{vol}(X)}$$

from which it follows that

$$\|v'_x\|_{L^2} \le \|v_x\|_{L^2} \le \frac{\sqrt{\kappa}\sinh(\epsilon/2)}{\sqrt{\operatorname{vol}(X)}}$$

Furthermore, by construction, $v'_x \in L^2_0(\Gamma \backslash SL_2(\mathbf{R}))$. The same statements all hold with x replaced by y. Since a_t preserves $L^2_0(\Gamma \backslash SL_2(\mathbf{R}))$ we have

$$\langle a_t v_x, v_y \rangle = \left(\int v_x d\mu \right) \left(\int v_y d\mu \right) + \langle a_t v'_x, v'_y \rangle$$

= $\frac{\kappa^2 \sinh(\epsilon/2)^4}{\operatorname{vol}(X)^2} + \langle a_t v'_x, v'_y \rangle$ (0.6)

and by applying Theorem (0.1) we have

$$|\langle a_t v'_x, v'_y \rangle| \le C \|v'_x\|_{L^2} \|v'_y\|_{L^2} t e^{-\frac{t}{2}(1-\delta)} \le C \frac{\kappa \sinh(\epsilon/2)^2}{\operatorname{vol}(X)} t e^{-\frac{t}{2}(1-\delta)}.$$

Combining this with (0.6) we see that

$$\langle a_t v_x, v_y \rangle > 0$$

when

$$te^{-\frac{t}{2}(1-\delta)} < \frac{\kappa \sinh(\epsilon/2)^2}{C \operatorname{vol}(X)}.$$

Assuming $g \to \infty$ with ϵ fixed, this holds with

$$t = \frac{2}{(1-\delta)} \left(\log \left(\frac{C \operatorname{vol}(X)}{\kappa \sinh(\epsilon/2)^2} \right) + 2 \log \log \left(\frac{C \operatorname{vol}(X)}{\kappa \sinh(\epsilon/2)^2} \right) \right).$$

On the other hand, $\langle a_t v_x, v_y \rangle > 0$ entails that there is a geodesic of length t connecting the balls of radius ϵ around x and y. This implies that the diameter of the ϵ -thick part of X is

$$\operatorname{diam}(X_{\geq \epsilon}) \leq 2\epsilon + \frac{2}{(1-\delta)} \left(\log \left(\frac{C \operatorname{vol}(X)}{\kappa \sinh(\epsilon/2)^2} \right) + 2 \log \log \left(\frac{C \operatorname{vol}(X)}{\kappa \sinh(\epsilon/2)^2} \right) \right).$$

When I refer to diam $(X_{\geq \epsilon})$, I a priori mean the diameter allowing paths to leave $X_{\geq \epsilon}$ in order to connect points.

To simplify the estimate above, one can fix ϵ and δ (so forcing uniform spectral gap) and let $g \to \infty$. One obtains

$$\operatorname{diam}(X_{\geq \epsilon}) \leq \frac{2}{(1-\delta)} \log \operatorname{vol}(X) + \frac{4}{(1-\delta)} \log \log \operatorname{vol}(X) + O_{\epsilon,\delta}(1)$$

This applies also to finite area hyperbolic surfaces. The optimum result one expects from this is (roughly) when $\lambda_1 = \frac{1}{4}$ and $\delta = 0$ whence one obtains

$$\operatorname{diam}(X_{\geq \epsilon}) \leq 2\log \operatorname{vol}(X) + 4\log \log \operatorname{vol}(X) + O_{\epsilon,\delta}(1).$$

In fact, the 4 above can be improved slightly.

Best wishes,

Michael, 17/7/2020 michael.r.magee@durham.ac.uk

References

- Robert Brooks. Some relations between spectral geometry and number theory. In Topology '90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pages 61–75. de Gruyter, Berlin, 1992. 2
- [2] Thomas Budzinski, Nicolas Curien, and Bram Petri. On the minimal diameter of closed hyperbolic surfaces, 2019. Preprint, arXiv:1909.12283. 1
- [3] Peter Buser. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4), 15(2):213–230, 1982.
- [4] Shiu Yuen Cheng. Eigenvalue comparison theorems and its geometric applications. Math. Z., 143(3):289–297, 1975.
- [5] Spencer Dowdall and Grace Work. Discretely shrinking targets in moduli space, 2019. Preprint, arXiv:1909.05817. 3

- [6] Heinz Huber. Über den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flächen. Comment. Math. Helv., 49:251–259, 1974.
- [7] Carlos Matheus. Some quantitative versions of Ratner's mixing estimates. Bull. Braz. Math. Soc. (N.S.), 44(3):469–488, 2013. 3
- [8] M. Mirzakhani. Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus. J. Differential Geom., 94(2):267–300, 2013. 2
- [9] Marina Ratner. The rate of mixing for geodesic and horocycle flows. Ergodic Theory Dynam. Systems, 7(2):267–288, 1987. 3