Letter to Bram Petri

Michael Magee

July 24, 2020

Dear Bram,

Let X denote a connected compact hyperbolic surface. Let Ax denote the Laplace-Beltrami
operator on X. The spectrum of Ax is discrete and accumulates only at oco; the bottom of the
spectrum is 0 and is a simple eigenvalue due to X being connected. We denote by A;(X) > 0 the
smallest non-zero eigenvalue of X, and h(X) the Cheeger constant. Write g for the genus of X and
diam(X) for the diameter of X. I'll write inj(X) for the injectivity radius of X.

In your talk at Durham in June (on the paper [2]) you mentioned briefly how to pass from
having a lower bound on A;(X) to having an upper bound on diam(X), by passing through the
Cheeger constant. Before discussing this, I recall that

h(X) <1+ 0g-00(1) (0.1)
and 1
AM(X) < 1 + 0g—00(1). (0.2)
The first inequality (0.1) is by
RA(X) <1+ 167° (0.3)
- diam(X) '

due to Cheng [1] together with
diam(X) > logvolX)(1 — o(1))

as you mentioned in your talk (by comparing volumes of balls in the universal cover to volumes of
balls in X'). The inequality (0.2) is a result of Huber [0].
So suppose we know A;(X) is large, and we want to bound diam(X) from above. One may use
the inequality of Buser [3]
A (X) < 2h(X) + 10h3(X)

to first obtain a lower bound for h(X) as

h(X) > % (—2 +4+ 40)\1(X))

(I am not sure if something better than this exists for hyperbolic surfaces). Even if A(X) = 7 is
essentially optimal, this only gives

h(X) > % (Vid—2) ~ 0087



which is far from the optimal value of h(X). Continuing with this argument for general X, we can
then the following result that Mirzakhani [3, §4.6] gives as an explicit version of a result of Brooks

diam(X) < 2 <r0 + h&) log <‘2703}2i§;>> .

where B(rp) is the infimum of the volume of a ball of radius rop in X. In particular, if we choose

[1]: for any 79 > 0,

ro = inj(X) we obtain

diam(X) < 2 (inj(X) +7 :X) log <8ﬂ S‘i’i((i(o )/2)2)>

and if we assume the injectivity radius is bounded from below by ¢ > 0 and h(X) > h > 0 we obtain

diam(X) < %log vol(X) + Oun(1). (0.4)
Using the previous arguments, the optimal constant in from of log vol(X) one can obtain, beginning
with a bound on A; (X)), and passing through the Cheeger constant, is about 23. On the other hand,
if you have a roughly optimal bound on h(X), say h(X) = 1, then one obtains a constant 2 in front
of log vol(X).

My point here is that one can do better than the previous arguments starting from a lower
bound on A1(X). Let me explain a more flexible bound below that will also apply to finite area
hyperbolic surfaces X.

At each point of z, we write ix(x) for the injectivity radius in X at x. The thick-thin decom-
position is

X =X UX>c

where X is the collection of points in 2 € X for which ix(x) <.
We now make the assumption that

1— 62
>
= 4

Ai(X) (0.5)
for 6 € (0,1). We can write X = I'\H with I' a discrete torsion-free subgroup of SLa(R). The
geodesic flow ¢g; on T' X can be identified with the action of the one-parameter group

aef [ €20
ar = 0 6—t/2

on I'\SLy(R). (The reason for the appearance of ¢/2 is to make the flow unit-speed).

This flow preserves a probability measure p on I'\SLg(R) that projects to the Riemannian
probability measure v on X and has induced uniform probability measure in the SO(2) fibers (here
SO(2) acts on the right and I'\SLy(R)/SO(2) is identified with T'\X in the usual way). More

precisely,
_ dvol(X)

YT Sol(X)
where dvol(X) is the volume form induced by the metric of constant curvature —1 on X. Let

L3(T\SLy(R)) denote the closed subspace of L?*(T'\SL2(R)) consisting of (classes of) functions
orthogonal to constants.



Suppose we are given € > 0 and two points x and y in X>.. The following theorem is a quantita-
tive version by Matheus [7] of a theorem of Ratner [9] (see [, Lemma 2.2] for this exact formulation)

Theorem 0.1. There is a uniwversal constant C > 0 such that with assumption (0.5) on \i1(X), for
any SO(2)-invariant vectors f1, fo in LE(T'\SLa(R)), we have

(acfr, fo)| < Cllfillz2llfy |l pate 2079,

Let v, and v, denote the characteristic functions of balls of radius € with centers z and y,
respectively. The condition x,y € X imply that these balls are embedded copies of balls of radius
€ in H and hence have Riemannian volume

rsinh(e/2)?

for some k = 47 > 0. We lift 9, to an SO(2)-invariant function v, on I'\SL2(R) and similarly lift

vy to v,. We write
Vp = </vmdu> 1—1—11;

and similarly decompose v,. We have

/ vpdp = / Gpdy = DN 2 Sivzlll((;(/fy

and

2, [ -2,  rsinh(e/2)?
/vxdu = /vxdy = 7V01(X)

from which it follows that
vk sinh(e/2)

Ve <o 2 <
ol < el < Yl

Furthermore, by construction, v, € L3(T'\SLa2(R)). The same statements all hold with x replaced
by y. Since a; preserves LZ(I'\SLa2(R)) we have

(a102,0,) = ( / %du) ( / Uydﬂ) T (artly )

k2 sinh(e/2)*
- vol?)(()/f) + {arvy, vj) (0.6)

and by applying Theorem (0.1) we have

(1-5) < o sinh(e/2)? P

_t
<at?1;n”;>\ < C||USCHL2””;/HL2te : vol(X)

Combining this with (0.6) we see that
(a,vz,vy) >0
when

to—1(1-0) ksinh(e/2)?
Cvol(X)



Assuming g — oo with € fixed, this holds with

= gy (s (i) + 21oss (i)

On the other hand, (a,v;,v,) > 0 entails that there is a geodesic of length ¢ connecting the balls of

radius € around x and y. This implies that the diameter of the e-thick part of X is

) <20 2 (1o (2000 gt (L0001

When I refer to diam(X>.), I a priori mean the diameter allowing paths to leave X in order to
connect points.

To simplify the estimate above, one can fix € and § (so forcing uniform spectral gap) and let
g — 00. One obtains

4
log vol(X) + ———— loglog vol(X) + O s(1).

diam(X>¢) < 1=90)

1=9)
This applies also to finite area hyperbolic surfaces. The optimum result one expects from this is
(roughly) when A; = 1 and § = 0 whence one obtains

diam(X>.) < 2logvol(X) + 4loglog vol(X) 4+ O, 5(1).

In fact, the 4 above can be improved slightly.
Best wishes,

Michael,
17/7/2020

michael.r.magee@durham.ac.uk
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